Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474561

RESUMO

Berberis species have a long history of use in traditional Chinese medicine, Ayurvedic medicine, and Western herbal medicine. The aim of this study was the quantification of the main isoquinoline alkaloids in extracts obtained from various Berberis species by HPLC, in vitro and in silico determination of anti-cholinesterase activity, and in vitro and in vivo investigations of the cytotoxic activity of the investigated plant extracts and alkaloid standards. In particular, Berberis species whose activity had not been previously investigated were selected for the study. In the most investigated Berberis extracts, a high content of berberine and palmatine was determined. Alkaloid standards and most of the investigated plant extracts exhibit significant anti-cholinesterase activity. Molecular docking results confirmed that both alkaloids are more favourable for forming complexes with acetylcholinesterase compared to butyrylcholinesterase. The kinetic results obtained by HPLC-DAD indicated that berberine noncompetitively inhibited acetylcholinesterase, while butyrylcholinesterase was inhibited in a mixed mode. In turn, palmatine exhibited a mixed inhibition of acetylcholinesterase. The cytotoxic activity of berberine and palmatine standards and plant extracts were investigated against the human melanoma cell line (A375). The highest cytotoxicity was determined for extract obtained from Berberis pruinosa cortex. The cytotoxic properties of the extract were also determined in the in vivo investigations using the Danio rerio larvae xenograft model. The obtained results confirmed a significant effect of the Berberis pruinosa cortex extract on the number of cancer cells in a living organism. Our results showed that extracts obtained from Berberis species, especially the Berberis pruinosa cortex extract, can be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of neurodegenerative diseases and human melanoma.


Assuntos
Alcaloides , Antineoplásicos , Berberina , Berberis , Melanoma , Humanos , Berberina/farmacologia , Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Alcaloides/farmacologia , Extratos Vegetais/farmacologia
2.
ACS Omega ; 8(38): 34982-34994, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779958

RESUMO

This research underscores the criticality of tailored culture conditions and incubation periods for effective and accurate identification of spore-forming bacteria: Bacillus licheniformis, Peribacillus simplex, Lysinibacillus fusiformis, Bacillus flexus, and Bacillus marisflav, isolated from food samples, utilizing the MALDI-TOF MS technique. All isolated strains were confirmed as Gram-positive bacteria from diverse genera through 16S rDNA gene sequencing. To enhance the accuracy of the identification process, the study employed an optimization strategy involving a varied incubation time (ranging from 1 to 48 h) and two distinct sample preparation approaches-direct transfer facilitated by formic acid and protein extraction via ethanol. It was observed that matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) could successfully identify approximately 47% of the samples following a 24 h incubation period. The study emphasizes the critical role of sample preparation methods in enabling precise bacterial identification. Our findings reveal the necessity of tailoring the incubation time for each sample, as the optimum period for accurate identification fluctuated between 1 and 12 h. Further demonstrating the interplay between incubation time and spore quantity, our study used the Schaeffer-Fulton staining method to show that the lowest spore counts were detected between 5 and 8 h of incubation. This provides evidence that spore formation impacts bacterial identification. Our research thus deepens the understanding of spore-forming bacteria identification using MALDI-TOF MS and illuminates the various factors affecting the dependability and accuracy of this technique. Future research may explore additional variables, such as the effect of varying culture media, to further augment identification accuracy and gain a holistic understanding of spore-forming bacterial behavior in food samples. By enhancing our knowledge, these findings can substantially contribute to improving food safety and quality assurance strategies by enabling the more accurate and efficient identification of spore-forming bacteria in the food industry, thereby elevating the standards of food safety.

3.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36077000

RESUMO

The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of "-omics" approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
Molecules ; 27(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335245

RESUMO

Vortioxetine (VOR) is a new antidepressant drug used to treat major depressive disorder. In this work, a novel, simple, rapid, accurate, precise, selective, stability-indicating, and fully validated high-performance liquid chromatography method with diode array detection (HPLC-DAD) was developed to determine VOR in bulk and pharmaceutical formulations. A Polar-RP column was used, with a mobile phase consisting of acetonitrile (ACN), methanol (MeOH), acetate buffer pH 3.5, and addition of diethylamine (DEA) in the isocratic elution mode. Assessing the stability of the VOR is fundamental to guarantee the efficacy, safety, and quality of drug products. In this study, the VOR active pharmaceutical ingredient (API) and tablets were subjected to a detailed study of forced degradation, using several degrading agents (acid, alkaline, water, heat, light, and oxidation agents). The developed HPLC-DAD method allows the collection of all the essential data to determine degradation kinetics. It was found that the decomposition of vortioxetine is fragile towards oxidative conditions and photolysis, yielding the first-order and second-order kinetic reaction in the above stress conditions, respectively. The degradation products (DPs) were identified by the high-resolution liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-QTOF-MS) method. The HPLC-DAD method was successfully applied for the quantification of VOR in tablets. Additionally, in silico toxicity prediction of the DPs was performed.


Assuntos
Transtorno Depressivo Maior , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Cinética , Espectrometria de Massas em Tandem/métodos , Vortioxetina
5.
Materials (Basel) ; 14(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500975

RESUMO

The aim of this study was to examine the synthesis of novel molecularly imprinted polymer (MIP)-coated polythiophene and poly(3-methylthiophene) solid-phase microextraction fibers using the direct electropolymerization method. Synthesized SPME fibers were characterized with the use of various physicochemical instrumental techniques. MIP-SPME coatings were successfully applied to carry out the selective extraction of selected antibiotic drugs (amoxicillin, cefotaxime, metronidazole) and their metabolites (amoxycilloic acid, amoxicillin diketopiperazine, desacetyl cefotaxime, 3-desacetyl cefotaxime lactone, hydroxymetronidazole). Solid-phase microextraction parameters for the simultaneous determination and identification of target compounds were optimized using the central composite design (CCD), and they accounted for 5-15 min for desorption time, 3-10 for the pH of the desorption solvent, and 30-100 µL for the volume of the desorption solvent. High-performance liquid chromatography and mass spectrometry (MS) detectors such as quadrupole time-of-flight (Q-TOF MS) and triple quadrupole (QqQ MS) were applied to determine and to identify selected antibiotic drugs and their metabolites. The MIP-coated SPME are suitable for the selective extraction of target compounds in biological samples from patients in intensive care units.

6.
Molecules ; 26(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443592

RESUMO

The bacterial infection of post-operative wounds is a common health problem. Therefore, it is important to investigate fast and accurate methods of identifying bacteria in clinical samples. The aim of the study was to analyse the use of the MALDI-TOF MS technique to identify microorganism wounds that are difficult to heal. The most common bacteria are Escherichia coli, Staphylococcus spp., and Enterococcus spp. We also demonstrate the effect of culture conditions, such as the used growth medium (solid: Brain Heart Infusion Agar, Mueller Hilton Agar, Glucose Bromocresol Purple Agar, and Vancomycin Resistance Enterococci Agar Base and liquid: Tryptic Soy Broth and BACTEC Lytic/10 Anaerobic/F), the incubation time (4, 6, and 24h), and the method of the preparation of bacterial protein extracts (the standard method based on the Bruker guideline, the Sepsityper method) to identify factors and the quality of the obtained mass spectra. By comparing the protein profiles of bacteria from patients not treated with antibiotics to those treated with antibiotics based on the presence/absence of specific signals and using the UniProt platform, it was possible to predict the probable mechanism of the action of the antibiotic used and the mechanism of drug resistance.


Assuntos
Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ferimentos e Lesões/microbiologia , Farmacorresistência Bacteriana , Humanos , Período Pós-Operatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...